Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity.

نویسندگان

  • Zeynep Aytac
  • Zehra Irem Yildiz
  • Fatma Kayaci-Senirmak
  • Turgay Tekinay
  • Tamer Uyar
چکیده

The volatility and limited water solubility of linalool is a critical issue to be solved. Here, we demonstrated the electrospinning of polymer-free nanofibrous webs of cyclodextrin/linalool-inclusion complex (CD/linalool-IC-NFs). Three types of modified cyclodextrin (HPβCD, MβCD, and HPγCD) were used to electrospin CD/linalool-IC-NFs. Free-standing CD/linalool-IC-NFs facilitate maximum loading of linalool up to 12% (w/w). A significant amount of linalool (45-89%) was preserved in CD/linalool-IC-NFs, due to enhancement in the thermal stability of linalool by cyclodextrin inclusion complexation. Remarkably, CD/linalool-IC-NFs have shown fast-dissolving characteristics in which these nanofibrous webs dissolved in water within two seconds. Furthermore, linalool release from CD/linalool-IC-NFs inhibited growth of model Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria to a great extent. Briefly, characteristics of liquid linalool have been preserved in a solid nanofiber form and designed CD/linalool-IC-NFs confer high loading capacity, enhanced shelf life and strong antibacterial activity of linalool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymer-free electrospun nanofibers from sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: Fast-dissolving and enhanced water-solubility of sulfisoxazole.

In this study, our aim was to develop solid drug-cyclodextrin inclusion complex system having nanofibrous morphology in order to have fast-dissolving property and enhanced water-solubility of poorly water-soluble drug. Here, we prepared a highly concentrated aqueous solution of inclusion complex between sulfisoxazole and sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD, Captisol®), and then, with...

متن کامل

Removal of Reactive Dyes from Wastewater using Cyclodextrin Functionalized Polyacrylonitrile Nanofibrous Membranes

Electrospinning of nanofibers with cyclodextrin (CD) is attractive because the produced fibers can potentially increase the efficiency of nanofibrous membranes by facilitating the complex formation with organic compounds and high surface area of the nanofibers. In this work, polyacrylonitrile (PAN) nanofibers functionalized with β– cyclodextrin (βCD) during an electrospinning process were used ...

متن کامل

Fast-Dissolving, Prolonged Release, and Antibacterial Cyclodextrin/Limonene-Inclusion Complex Nanofibrous Webs via Polymer-Free Electrospinning.

We have proposed a new strategy for preparing free-standing nanofibrous webs from an inclusion complex (IC) of a well-known flavor/fragrance compound (limonene) with three modified cyclodextrins (HPβCD, MβCD, and HPγCD) via electrospinning (CD/limonene-IC-NFs) without using a polymeric matrix. The experimental and computational modeling studies proved that the stoichiometry of the complexes was...

متن کامل

Antioxidant Vitamin E/Cyclodextrin Inclusion Complex Electrospun Nanofibers: Enhanced Water Solubility, Prolonged Shelf Life, and Photostability of Vitamin E.

Here, we demonstrated the electrospinning of polymer-free nanofibrous webs from inclusion complex (IC) between hydroxypropyl-β-cyclodextrin (HPβCD) and Vitamin E (Vitamin E/HPβCD-IC NF). The inclusion complexation between HPβCD and Vitamin E was prepared by using two different molar ratios (Vitamin E/HPβCD; 1:2 and 1:1), which correspond to theoretical value of ∼13% (w/w) and 26% (w/w) loading ...

متن کامل

Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes.

Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Food chemistry

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2017